
Distributed Centroid Estimation and Motion Controllers for Collective
Transport by Multi-Robot Systems*

Golnaz Habibi1, Zachary Kingston2, William Xie 3, Mathew Jellins4, and James McLurkin5

Abstract— This paper presents four distributed motion con-
trollers to enable a group of robots to collectively transport
an object towards a guide robot. These controllers include:
rotation around a pivot robot, rotation in-place around an
estimated centroid of the object, translation, and a combined
motion of rotation and translation in which each manipulating
robot follows a trochoid path. Three of these controllers require
an estimate of the centroid of the object, to use as the axis of
rotation. Assuming the object is surrounded by manipulator
robots, we approximate the centroid of the object by measuring
the centroid of the manipulating robots. Our algorithms and
controllers are fully distributed and robust to changes in
network topology, robot population, and sensor error. We tested
all of the algorithms in real-world environments with 9 robots,
and show that the error of the centroid estimation is low, and
that all four controllers produce reliable motion of the object.

I. INTRODUCTION AND RELATED WORK

Multi-robot systems provide advantages in flexibility and
robustness for object manipulation tasks that individual
robots cannot provide. For example, in the event of a
disaster, rescue missions often involve transportation of large
numbers of large objects, multi-robot systems can transport
these in parallel, using more robots for larger objects. A
package-handling logistics center requires quick and efficient
transportation of many objects of a wide range of sizes,
shapes, and weights. Specialized manipulators for different
object types could be costly to design and more compli-
cated to implement than groups of simpler, highly scalable
manipulators that can work together. In these applications,
large populations of robots permit flexible task allocation
and parallel operations, but require motion controllers to
cooperatively move large objects.

We are interested in techniques that allow a group of
simple robots to manipulate objects that are larger than any
one robot can move alone, like the example in Fig. 1. Low-
cost robots can be cheaply deployed in large populations, but
often have limited computation and sensing, which requires
different approaches for coordination.

A variety of different methods of multi-robot transporta-
tion have previously been studied. These studies can largely

*This work has been supported by the NSF under CNS-1330085
1Golnaz Habibi is a graduate student, Computer Science, Rice University,

6100 Main Street, 77005 Houston, TX golnaz.habibi@rice.edu
2Zachary Kingston is an undergraduate student, Computer Science, Rice

University zkk1@rice.edu
3William Xie is a graduate student, Computer Science, University of

Texas at Austin wxie@cs.utexas.edu
4Mathew Jellins is an undergraduate student, Computer Engineering,

Purdue University mjellins@purdue.edu
5James McLurking is with the Faculty of Computer Science, Rice

University jmclurkin@rice.edu

Fig. 1: Seven r-one robots with grippers (black circles) [1] are
gripping an object (the orange “bean”). Our goal is to transport the
object along the path marked by the guide robots (blue circles).
In our previous work [2], we described algorithms that enable
each guide robot to compute a collision-free pose for the object
at the robot’s location. This paper presents distributed controllers
that use the guide robot’s navigation information to control a group
of manipulator robots. In this image, the manipulator robots will
translate the object to the first guide, then rotate and translate to
the second guide, and lastly translate again towards the third guide.
This work presents distributed algorithms to estimate a shared
center-of-rotation, the centroid of the object, and distributed motion
controllers for translation, rotations, and combinations of the two.

be separated into two different categories. One category has a
high degree of communication between robots, and the other
is more distributed, with very limited inter-robot communica-
tion. Le et al. [3] used a heterogeneous group of three robots
in a leader-follower configuration to move an object, where
a single leader robot had improved capabilities to coordinate
object transportation using two follower manipulator robots.
Object closure formation have been investigated for efficient
multi-robot transport [4], [5]. Chen and Luh [6] approached
the problem by dividing the coordination and control into
five sub-tasks. Groß et al. [7], [8] used self-configurable
robots and artificial neural network to transport a large object.
Examples of work using limited communication use a swarm
of decentralized micro robots to transport a large object
without prior knowledge of the payload through common
control [9] or by using force consensus [10]. These tech-
niques are closest to our work.

Our approach is inspired by natural systems that are able
to use large groups of agents for manipulation tasks [11].
The distributed manipulation they use offers advantages that
a single manipulator cannot provide. The force applied to the
object by individual agents can be more evenly distributed
across the geometry of the object. Multiple agents on op-
posite sides of an object can generate a large torque, which

makes object rotation easier. Furthermore, the arrangement
of multiple agents along the perimeter of the object improves
the collective ability of the system to sense and avoid
obstacles during transportation.

This paper presents distributed algorithms to transport
objects of different sizes, weights, and geometries. Our
algorithms are self-stabilizing, robust to dynamic network
topology, changes in robot population, and sensor errors. We
aim to address situations where global sensing, communi-
cation, and geometry is not readily available or too costly
to implement. We use multi-hop communications [12] to
exchange local information and local geometry in order to
cooperate with other robots, avoiding the need for a shared
global coordinate frame [13]. We present a novel, tree-based
algorithm to accurately estimate the centroid of the object.
Centroid estimation had been accomplished using consensus
or gossip-based algorithms in previous literature [14], but this
approach has limitations that we overcome. We describe four
different motion controllers for the object: rotation around
a pivot robot, rotation around the centroid of the object,
translation towards a guide robot, and a combination of
rotation and translation (See Fig. 5). The motion controllers
allow the robots to manipulate an object with high dexterity,
and collectively cover all types of motion on the plane. We
implement and verify the centroid estimation and controller
effectiveness in a physical robot system of 2-9 robots.

II. MODEL AND ASSUMPTIONS

We assume that our robots are inside an environment too
large for centralized communication. A communication net-
work is built by the robots using inter-robot communications
between nearby robots within a fixed distance d, where d
is much smaller than the size of the environment. We can
model the robot’s communications network, G = (V,E), as
an undirected unit disk graph. Each robot constitutes a vertex
u ∈ V , where V is the set of all robots and E is the set of
all robot-to-robot communication links. The set Vm is the
set of all manipulator robots. The neighbors of each vertex
u are the set of robots within line-of-sight communication
range d of robot u, denoted N(u) = {v ∈ V | {u, v} ∈ E}.
We assume that G is connected.

Our robots are homogeneous and are modeled as a disk
and move using non-holonomic differential drive. Each robot
u has a unique id, u.id. Each robot is situated at the origin of
its own local coordinate frame with the x̂-axis aligned with
its current heading. Robots can measure the relative pose of
its neighbors (See Fig. 2).

We model algorithm execution as proceeding in a series of
discrete rounds. While the robots actual operation is asyn-
chronous, implementing a synchronizer simplifies analysis
greatly and is easy to implement [13].

We assume there is a large population of robots spread
over the environment [15]. In previous work, we developed
algorithms for these guide robots to generate the configura-
tion space and plan a path for an object to be transported [2].
A small subset of the robot population are manipulator
robots are responsible for transporting the object, and are

Robot v

Robot u

Buv

Ouv

Ruv

2:Fig. Local network geometry of robot v
measured from robot u. Buv is the bear-
ing, the angular position of robot v from
robot u’s heading. Ouv is the orientation,
the relative heading of robot v from Buv ,
and Ruv is the distance between the two
robots.

attached to it. In this work we assume the manipulator robots
can communicate with one guide robot to determine the
local motion required. The manipulator robots have no prior
knowledge of the shape or size of the object. We model the
robots’ attachment to the object as pin joints, which means
that an individual robot can apply a force to the object, but
not a torque. Multiple robots can rotate and translate objects
by exerting forces in cooperation, generating net torques and
forces on the object.

III. ESTIMATION OF CENTROID OF THE OBJECT

Three of our motion controllers require the robots to
compute a shared center of rotation. We assume that there are
enough robots surrounding the object such that their positions
form a polygon that resembles the shape of the object. As
the centroid of a polygon is located at the average positions
of all of the objects vertices, the object’s centroid can be
approximated by taking the average of the robot’s positions.

In order for our controllers to be effective, the centroid
estimation needs to be robust to the types of errors found
in multi-robot systems. Previous approaches [14] present a
consensus-based approach. This type of estimate is accu-
rate, uses limited communications, and requires only local
information. However, these algorithms compute consensus
of the initial configuration of the network. Any initial error
will be maintained indefinitely. Consensus-based algorithms
will converge within acceptable error when communication
failure is present, but these algorithms are not usually
robust to changes in robot configuration and are not self-
stabilizing [16].

We use a distributed, tree-based algorithm to estimate the
centroid. Each robot u ∈ Vm builds a tree Tu rooted on
itself, extending to all manipulator robots, shown in Fig. 3.
The centroid of the manipulator robots is xc =

∑
u.x

|Vm| , yc =∑
u.y

|Vm| . Our approach distributes the sum computation so that
each robot computes the number of children on its subtree,
and the sum of their positions in its coordinate frame. In
this way, the messages propagated up the tree are always of
constant size, and the root of the tree can perform the final
division by the total number of children as the final step.

Each robot needs to relay the trees for every other manip-
ulator robot, which requires each robot to maintain a list of
these trees, labeled by the ID of the source robot. Building
a consistent list of trees on each robot requires a list of all
manipulator robots, which we build with the Extreme-Comm
algorithm [17]. These trees are communicated to all robots
each round, this requires O(|Vm|) messages per robot per
round, which is only viable for small values of |Vm|.

X

A

C

I

F

B

E
X

X

X

X

X
HG

X
D

X X

MC
F MA

C

S = S0

SAA = (0,0,1)+ MSAc
A +C M SAD MSAE +

MA
E

M

MA
B

MSAB +

ME
H

ME
G

M

= (0,0,1)
SAE = (0,0,1)+ MSAG+ M SAH

E
G

E
H
A
D E

A A
B

D
I

AG

A
D

Fig. 3: A tree rooted on robot A. Each node receives the sum
its subtree’s nodes positions. The node converts the positions to
its local coordinate frame. This node then calculates its sum and
passes it up to its parent. The root of the tree then calculates the
centroid by diving its sum by the total number of children. There
are trees rooted on every node in the network that are calculated
concurrently.

Algorithm 1 Algorithm for Centroid Estimation

1: ~S0 ← (0, 0, 1)
2: Repeat forever on each robot u
3: for all Ti ∈ {T1, . . . , Tn} do
4: ~Siu ← ~S0 +

∑
v∈Nc(u)

u
vM ~Siv

5: end for
6: if u root of Ti then
7: Xsum ← ~Siu.x
8: Ysum ← ~Siu.y
9: Ccount ← ~Siu.cc

10: ~Centroidi ← (Xsum/Ccount, Ysum/Ccount)
11: end if

In a tree Ti, robot u reads the message ~Siv =
(S.x, S.y, S.cc) from each of its children, v ∈ Ni(u), where
S.x and S.y are the sum of the positions of the descendant
nodes of v, and S.cc is the total size of v’s subtree. In line
4 of the Algorithm 1, robot u calculates and broadcasts its
own value, Siu. The position of child robot v is transformed
to the local coordinate frame of its parent u using the
transformation matrix, u

vM defined in (1). The parameter θ
for the transform is given by (2).

u
vM =

cos(θvu) − sin(θvu) xvu
sin(θvu) cos(θvu) yvu

0 0 1

 (1)

θvu = π −Ovu +Bvu (2)

Using algorithm 1, each robot u calculates the sum of
position of its subtree. To show how this algorithm works,
consider the tree of robots rooted on A (See Fig. 3). If each
robot passes the position of its children to its parent, robot A,
the root, would have the positions of all children in the tree.
We define the position of a robot u in robot v’s coordinate
frame to be uv. uu is (0, 0, 1). Consider the subtree of A

(a) Centroid measurement error for many types of objects

-1 Robot

+2 Robot

+1 Robot -2 Robot

(b) Centroid Self-Stablization

Fig. 4: (a) Data on centroid estimation. The mean error for the
estimate is 4.64%. The blue line shows mean error over all objects.
The standard deviation is shown by the blue shading. The other
colored lines show mean error for different objects. (b) Data from
the self-stabilization experiment. Starting with 5 robots, robots were
added and subtracted from the population in different locations over
time. The estimate stabilizes to a steady result a few rounds after
each disturbance.

consisting of the set of robots {A,E,G,H}. The sum of the
positions of the robots in this subtree at robot A would be

S = A
EM

EE + A
EM

E
HM

HH + A
EM

E
GM

GG

= A
EM(EE + (EHM

HH + E
GM

GG))

A. Analysis and Experimental Results

We tested our algorithm for centroid estimation on 2-9 r-
one robots, on 5 different objects, for a total of 90 trials. The
results are shown in Fig. 4a, which illustrates the error of the
centroid estimation to the actual location of the centroid is
consistent and less than 8%. Interestingly, the error does not
depend on the shape of the object and does not change across
different population. However, the variance increases with
the number of robots. This error is expected as the angular
sensor errors are accumulated due to coordinate transform of
the position.

Our tree-based algorithm for the centroid estimation is
continually updated using current sensed values. This uses
a great deal of communication resources, but provides the

Y

X

Vωu

θ
β

t = 0 t = t1

xu

R

yu

VT

VT
Vu

U
u

u

du
du

Fig. 6: Parameters for the trochoid. The trochoid is modeled by
a point moving relative to a circle rolling on the ground without
slipping. For the purposes of our algorithm, we simplify the object
to be inside a rolling circle of radius R.

algorithm with robustness with regards to communication
failure, population changes, and configuration changes. The
algorithm is self-stabilizing and “forgets” previous states of
the network, allowing errors to wash out after O(2diam(G))
rounds. The self-stabilizing property of the algorithm is
shown in Fig. 4b. Starting with 5 robots, we add and remove
robots during the experiment. The robots consistently update
their estimate and track the changes in network population.

Consensus-based algorithm have a smaller per-round com-
munication cost, O(1), whereas our tree-based algorithm has
a communications complexity of O(n). However, the time
for consensus to converge depends on the specific network,
and the final error bounds that are desired. For example, to
achieve an error less than 5% in a path network of diameter
3, a pairwise gossip consensus algorithm would require 10
rounds of computation, producing a 3.1% error[18]. Our tree-
based centroid estimation completes in 2depth(Ti), where
depth(Ti) = the depth of tree Ti, which is bounded by
diam(G). As the depth of tree Ti increases, delay for the
information to travel from the leaves to the root increases
linearly. In our experiments, this delay is apparent for robots
at the edge of the communication graph experience greater
error due to the comparatively old data from far away robots.
Our results show that despite this drawback, the estimate
of the centroid is still practical technique on our real robot
experiments involving up to 9 robots and a communication
tree with a maximum depth of five.

IV. DISTRIBUTED MOTION CONTROLLERS

Our goal is to move the robot between two guide robots [2]
with different configurations, which requires translation,
rotation, combine motion of two. We have created four
distributed primitive motion controllers for transport of an
object: rotation about a pivot robot, rotation around the
estimated centroid, translation towards a guide robot, and
a combined controller with both rotation and translation that
moves and rotates the object simultaneously. These four con-
trollers are the primitive movements that will eventually lead
to more complicated multi-robot manipulation of an object
in a distributed manner. We have verified our controllers in
real-world experiments.

Pivot Rotation The object can be rotated about a special
pivot manipulation robot. Once a pivot robot has been
selected, other manipulator robots align their heading per-
pendicularly to the location of the pivot robot and move with
a speed proportional to their distance from the pivot robot
(See Fig. 5a). This creates circular trajectories centered on
the pivot with tangential velocity Vu = ωdu for robot u,
where ω is the desired angular velocity of the object and du
is the distance of robot u from the pivot.

Each robot learns its vector to the pivot robot in their own
local coordinate frame in a process similar to the centroid
estimation. The pivot robot builds a broadcast tree rooted on
itself (See Fig. 3). This broadcast tree relays the vector to the
pivot down the kinematic chain. As the broadcast message
propagates from parent to child, each child updates its vector
to the root by using the parent’s position in its coordinate
frame to transform the parent’s vector to the pivot into its
coordinate frame.

Reading the subtree’s pivot position, a robot can convert
the position to its local coordinate frame. This is done by a
series of transformations:

uP = u
vM

vPu (3)

where uP is the location of the pivot robot, P , in robot
u’s reference frame. v is u’s parent in the tree rooted at pivot
robot.
Centroid Rotation The object can be rotated about the
estimated centroid of the object for a rotation in-place (See
Fig. 5b). Using our centroid estimation algorithm, each ma-
nipulator robot can estimates the location of the centroid. We
then use the same algorithm as the pivot rotation controller,
the robots align themselves perpendicularly to the vector
towards the centroid and command a tangential velocity
proportional to their distance.
Translation The object can be translated towards a guide
robot situated outside the object (See Fig. 5c). Each manip-
ulator robot computes its vector to the guide robot, ~G, using
(3), the same algorithm for the pivot controller. Using their
centroid estimate, ~C, robots can find the desired vector of
the object to the guide robot: ~VT = ~G− ~C. Then, the robot
aligns itself parallel to this vector and commands the velocity
| ~VT | to transport the object.
Combined Controller The object can be rotated and
translated towards a guide at the same time (See Fig. 9).
Given a desired rotational (ω) and translation velocity (VT)
for the object, it moved and rotated along a straight path, but
each robot moves along a trochoid path.

Fig. 6 shows the geometry for the combined controller for
robot u. It generates the velocity ~Vu, which is the vector sum
of ~Vωu , where | ~Vωu | = duω for rotational velocity, and ~VT
for the translational velocity. Assigning | ~Vωu

| = | ~VT | and
regarding Fig. 6, the x and y components of ~Vu with angle
β are derived as follows:

~Vxu
= | ~Vωu

| cosβ + | ~VT | = duω cosβ + ~VT
~Vyu = | ~Vωu | sinβ = duω sinβ

d A

d B

d C

P

B

A

C

ω

VA=dAω

VB=dBω

Vc=dCω

(a) Pivot Rotation

d A
d B

d C

ω

B

C

A

VA=dAω

Vc=dCω

VB=dBω

Centroid

(b) Centroid Rotation

G

C

G - C
VT

VT

Centroid

Guide

(c) Translation

Fig. 5: The three basic motion controllers. (a) Rotation about a pivot - Robots align themselves perpendicular to a pivot robot and
rotate the object about the pivot. (b) Rotation about the centroid - Robots estimate the position of the objects centroid, align themselves
perpendicular towards it, and rotate the object in place. (c) Translation - Robots translate the object along the vector from the estimated
centroid to a guide robot.

Therefore, the xu and yu position of robot u is computed as:

xu =

∫ t

0

~Vxu
dt+X0 =

∫ t

0

~Vxu
dt+ 0

=

∫ t

0

duω cos(90 + (90− θ)) dt+
∫ t

0

Rω dt

= −du sin θ +Rθ

yu =

∫ t

0

~Vyu
dt+ Y0

=

∫ t

0

duω sinβ dt+ (R− du)

= −du cos θ + du +R− du = −du cos θ +R

This derivation gives us:

xu = Rθ − du sin θ yu = R− du cos θ (4)

which is the equation for the position of a point du distance
from the center of rotation. This point moves on a trochoid
path. �

Therefore each robot can calculate its desired velocity ~Vu
using the centroid estimate, ~C, and the guide position, ~G,
from Fig. 5c. With each manipulator moving on a trochoid
path, the object moves along a straight path while rotating.

V. HARDWARE EXPERIMENTS

We used the r-one robot platform [1] for our hardware
experiments. This is the same robot platform we used in our
previous work on distributed path planning [2]. We tested
our algorithms using groups of 2-9 robots. The r-one robots
use an infrared communication system communicate with
their neighbors in synchronous rounds of 1500 milliseconds
(see Section II). The communication system also measures
the relative pose to each neighboring robot. However, the
range measurement component of neighobr pose was still
under development, so we used the AprilTag system [19]
to determine both ground-truth pose of each robot for data
collection, and to broadcast inter-robot ranges to each robot.

(a) Gripper (b) Gripping an object

Fig. 7: (a) A single r-one robot with the gripper attachment.
Alternate paddles can move to oppose each other to grasp objects.
The red arrows show the gripping motion of the paddles. The entire
gripper is free to rotate around the robot, as shown by the blue
arrows. (b) The gripper can grab any object equipped with the
appropriate “handles”. Because the griper is free to rotate around
the robot, the robot can exert a force on the object, but not a torque.

A. Gripper

The r-one gripper allows the robot to grasp onto objects
with appropriately sized “handles”, shown in Fig. 7b [1].
The gripper can grasp from any direction, and is free to
rotate around the robot, shown in Fig. 7a. This uncon-
strained rotation allows us to simplify our model for object
transportation; an individual robot is a force source, and
cannot exert a torque. The current revision of the gripper has
considerable friction around the free pivot point, and this puts
some limitations on our controllers, which we will discuss
in our results section. Also, the free-rotating assembly has a
330°rotation limit to prevent winding of the cord that attaches
the gripper control board to the r-one. The distance between
the attachment point of the gripper on the object to the
robot’s point of contact with the ground can create a torque

between the robots and the object, which tends to perturb
the robot’s heading as they are controlling the object.

B. Motion Controllers

The tests of the motion controllers were started with the
robots positioned and attached along the perimeter of a test
object. In order for the robots to overcome the frictional
forces and rotational constraints introduced by the grippers,
the robots were allowed to align themselves towards their
desired vector at the beginning of the experiment so they
would not get stuck against the limit stop of the gripper.

We tested each motion controller for 5-7 robots, 12 trials
each, for 96 total trials. We compared the desired values of
the object’s translational velocity TV and rotational velocity
RV against our measured values. Fig. 8 shows the results for
all controllers. In general, the performance was quite good,
with all the controllers producing well-controlled motion.
In all the controllers, wheel slippage and friction were the
dominant sources of error, making it difficult to specify
the exact speed, however, all the speeds produced had low
variance . Detailed discussion follows.
Pivot Rotation The pivot controller data is shown in Fig. 8a.
The translational velocity at the center of rotation (the pivot
robot) was nearly zero, while the rotational velocity shows
the value for the object. The errors in the expected to actual
values come from conflicting forces other robots exerted on
the object, the force that the object then exerted on the robot,
and the constant adjustments that the robots needed to make
to continue to apply force along the desired vector. The TV of
the center of rotation shown in Fig. 8a is actually a tangential
velocity of the pivot robot as it is pulled in a circular path
by the other robots rotating the object around it.
Centroid Rotation Fig. 8b shows 12 trials of centroid
rotation. The object showed a mean RV slightly under the
desired value of 5.84 degrees per second and a TV close
to 0. Like in the pivot, the other robot’s forces limit the
robot’s potential to achieve the desired velocities. The TV
of the centroid is also a tangential velocity of a circular path.
This is due to the robots aligning themselves towards the
approximated centroid, not the actual, making the center of
rotation slightly skewed.

It should be noted that the trials with 6 manipulator robots
had noticeably better performance in the rotational motion
controllers than either the 5 or 7 robot trials. This is due to the
distribution of the robots around the object. Due to the shape
of that object, the more symmetrical distribution of robots
about the perimeter allowed for more accurate estimation of
the centroid and smoother rotation.
Translation Fig. 8c shows the results of experiments with
the translational controller. Our experimental data shows the
small difference between the desired TV of the object to the
actual, and the small amount of RV the object experiences
in the real experiment. Just as in the rotation about the pivot,
other forces limit the robot’s potential to achieve the desired
velocities.

In the case of this controller, more robots added to the
task of manipulation improves the motion of the object.

0 40 80 120 160
0

40

80

120

X(cm)

Y
(c

m
)

t0

t1

Fig. 9: The trajectory of the object and manipulator robots when
moving using the compound controller from initial time t0 to t1.
Each robot follows a trochoid path. The centroid moves along a
(mostly) straight line, and is represented by the red point and path.

More robots applying force to the object allows for smoother,
straighter movement.
Combined Motion For the tests of the compound trochoid
motion controller, we placed the r-one robots inside holes of
an object (Fig. 9) instead of using grippers as the frictional
and motion constraints caused by the gripper attachments are
too great to accurately test the capabilities of this controller.
This controller was the most sensitive to the friction and
inter-robot forces. This is because out of the 4 controllers,
this is the only one that has the robots moving relative to
each other in the ideal case. The overshoot at the beginning
of the trials is most likely caused by the difficulty in breaking
static friction, but then the velocities stabilized close to the
desired values.

VI. DISCUSSION AND LIMITATIONS

The first source of error comes from the inaccuracy
of local pose estimation between neighboring robots. For
centroid estimation, the limited angular resolution of our
sensors is compounded as the tree’s depth increases, and
stacked angular pose estimations cause error to propagate
up the tree. A poor angular measurement near the root of
the tree can cause estimated data from all children to be off
by a wide margin. However, the centroid error is still small,
so this is not a major impact.

The largest source of error in our experiments is the
friction between the robots and the grippers, which were
compounded by the exogenous forces exerted on the robots
by others moving the object. In the process of conducting
this work, we have upgraded many parts to low-friction
teflon versions. This helps, but the core limitation is that the
robots cannot sense the forces that are being applied to them.
This is because we have only studied kinematic controllers
in this work, handling external forces will require dynamic
controllers. This is an exciting area for future work, and
design of a force-sensing gripper is already underway.

(a) Pivot rotation (b) Centroid rotation (c) Translation (d) Combined(Trochoid)

Fig. 8: The comparison of performance of controllers in hardware experiments. In all these plots, the measured translational and rotational
velocities of the object are shown in red and blue. The mean is drawn as a solid line and the variance is shaded. The desired velocities
are shown with dotted lines. (a) Rotation around the pivot. In this plot, the TV shown is for the pivot robot. (b) Rotation around the
estimated centroid. (c) Translation toward the guide robot. (d) Combined motion. Each robot follows a trochoid path.

VII. CONCLUSION

We introduced four distributed motion controllers for
multi-robot systems to collectively manipulate a large object.
In addition, we also developed a novel centroid estimation
algorithm to provide an accurate and stable way for the
robots to gain a reference point on the object without explicit
knowledge of the geometry of the object. With the controllers
and centroid calculation as building blocks, multiple robots
can rotate and translate an object in a variety of different
trajectories, allowing easier traversal around obstacles.

Our goal is to integrate these controllers with our previous
work in path planning [2] to create a complete multi-robot
transport solution. Using planning robots distributed across
the environment, the motion controllers from this paper can
follow the planned path to maneuver an object from the start
to the goal positions. There are many open problems with this
approach, such as coordination between guide and gripper
robots, avoiding collisions during transport, and deciding
the proper combinations of the controllers to use. We look
forward to these topics in future work.

ACKNOWLEDGMENT

The authors would like to thank Kai Holnes and Sujay
Tadwalkar for their numerous efforts in collecting data.

REFERENCES

[1] J. McLurkin, A. McMullen, N. Robbins, G. Habibi, A. Becker,
A. Chou, H. Li, M. John, N. Okeke, J. Rykowski, S. Kim,
W. Xie, T. Vaughn, Y. Zhou, J. Shen, N. Chen, Q. Kaseman,
L. Langford, J. Hunt, A. Boone, and K. Koch, “A robot system
design for low-cost multi-robot manipulation,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Chicago,
IL, USA, September 14-18, 2014. IEEE, 2014, pp. 912–918. [Online].
Available: http://dx.doi.org/10.1109/IROS.2014.6942668

[2] G. Habibi, W. Xie, M. Jellins, and J. McLurkin, “Distributed Path
Planning for Collective Transport Using Homogeneous Multi-Robot
Systems,” Proc. of the International Symposium on Distributed Au-
tonomous Robotics Systems, 2014.

[3] Y. Le, H. Kojima, and K. Matsuda, “Cooperative Obstacle-Avoidance
Pushing Transportation of a Planar Object with One Leader and Two
Follower Mobile Robots,” Journal of Robotics and Mechatronics,
vol. 17, pp. 77–88, 2004.

[4] G. A. S. Pereira, V. Kumar, and M. F. M. Campos, “Decentralized
algorithms for multirobot manipulation via caging,” International
Journal of Robotics Research, vol. 23, pp. 783–795, 2002.

[5] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-Robot Manipulation via
Caging in Environments with Obstacles,” Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, pp. 1471–1476,
May 2008.

[6] Q. Chen and J. Y. S. Luh, “Coordination and control of a group of
small mobile robots,” pp. 2315–2320 vol.3, May 1994.

[7] R. Groß, E. Tuci, M. Dorigo, M. Bonani, and F. Mondada, “Object
Transport by Modular Robots that Self-assemble,” no. May, pp. 2558–
2564, 2006.

[8] R. Gross and M. Dorigo, “Towards group transport by swarms
of robots,” Int. J. Bio-Inspired Comput., vol. 1, no. 1/2, pp. 1–13,
Jan. 2009. [Online]. Available: http://dx.doi.org/10.1504/IJBIC.2009.
022770

[9] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin,
and R. Nagpal, “Collective transport of complex objects by
simple robots: Theory and experiments,” in Proceedings of the
2013 International Conference on Autonomous Agents and Multi-agent
Systems, ser. AAMAS ’13. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, 2013, pp. 47–
54. [Online]. Available: http://dl.acm.org/citation.cfm?id=2484920.
2484932

[10] Z. Wang and M. Schwager, “Multi-Robot Manipulation without Com-
munication,” Proc. of the International Symposium on Distributed
Autonomous Robotic Systems, 2014.

[11] S. Berman, Q. Lindsey, M. S. Sakar, V. Kumar, and S. C. Pratt,
“Experimental Study and Modeling of Group Retrieval in Ants as an
Approach to Collective Transport in Swarm Robotic Systems,” Proc.
of the IEEE, vol. 99, pp. 1470–1481, 2011.

[12] K. Akkaya and M. Younis, “A survey on routing protocols for
wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325 –
349, 2005. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1570870503000738

[13] J. McLurkin, “Analysis and implementation of distributed algorithms
for multi-robot systems,” Ph.D. dissertation, MIT ,USA, 2008.

[14] M. Franceschelli and A. Gasparri, “Decentralized centroid estimation
for multi-agent systems in absence of any common reference frame,”
in American Control Conference, 2009. ACC ’09., June 2009, pp. 512–
517.

[15] M. A. Batalin and G. S. Sukhatme, “Spreading out: A local approach
to multi-robot coverage,” in in Proc. of 6th International Symposium
on Distributed Autonomous Robotic Systems, 2002, pp. 373–382.

[16] G. Habibi, Z. Kingston, Z. Wang, M. Schwager, and J. McLurkin,
“Pipelined consensus for global state estimation in multi-agent sys-
tems,” in Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multi-agent Systems, ser. AAMAS ’15. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2015.

[17] J. McLurkin and D. Yamins, “Dynamic task assignment in robot
swarms,” in Proceedings of Robotics: Science and Systems, Cam-
bridge, USA, June 2005.

[18] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
Cooperation in Networked Multi-Agent Systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

[19] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2011, pp. 3400–3407.

